## Hodge Laplacian and biological applications

#### Jiahui Chen At Purdue Workshop on Scientific Computing

Research associate, Department of Mathematics, Michigan State University

October 8, 2022



- 2 Differential geometry, de Rham complex, and Hodge theory
- 3 Evolutionary de Rham-Hodge Method
- Oiscretization and numerical technique





2 Differential geometry, de Rham complex, and Hodge theory

- 3 Evolutionary de Rham-Hodge Method
- Discretization and numerical technique



## Motivation



Figure 1: **a** illustration of filtration, **b** Benzene molecule and the filtration process, **c** EMD-1776, credits for **a** and **b** belongs to Rui Wang

Jiahui Chen (MSU)

Hodge Laplacian and biological applicatic

# Persistent Homology





• Betti number:  $\beta_k = \mathsf{Rank}(H_k)$ 

## Persistent Homology

6 / 32



## Persistent Homology







- 3 Evolutionary de Rham-Hodge Method
- Discretization and numerical technique



#### 3-dimensional volumes bounded by 2-manifolds in $\mathbb{R}^3$



Figure 2: PDB: 3VZ9, C-alpha atoms (yellow spheres) are considered in this case. [7]

Every cohomology class has a differential form that vanishes under the Laplacian operator of the metric

Jiahui Chen (MSU)

Hodge Laplacian and biological application

Manifolds with boundary, (3-dimensional volumes bounded by 2-manifolds in  $\mathbb{R}^3)$ 

- ▶ A differential k-form  $\omega^k \in \Omega^k(M)$  is an antisymmetric covariant tensor of rank k on manifold M
- ► The *differential* operator (i.e., exterior derivative)  $d^k$  maps from a k-form on manifold to a k + 1-form,  $d^k : \Omega^k(M) \to \Omega^{k+1}(M)$
- ► The Hodge k-star  $\star^k$  (aka Hodge dual) is linear map from a k-form to its dual form,  $\star^k : \Omega^k(M) \to \Omega^{3-k}(M)$
- The *codifferential* operators  $\delta^k : \Omega^k(M) \to \Omega^{k-1}(M)$ ,  $\delta^k = (-1)^k \star^{4-k} d^{3-k} \star^k$ , for k = 1, 2, 3

### de Rham complex

► The de Rham-Laplace operator, or Hodge Laplacian

$$\Delta^k \equiv d^{k-1}\delta^k + \delta^{k+1}d^k$$

de Rham complex

$$0 \longrightarrow \Omega^0(M) \xrightarrow{d^0} \Omega^1(M) \xrightarrow{d^1} \Omega^2(M) \xrightarrow{d^2} \Omega^3(M) \xrightarrow{d^3} 0$$

Bi-directional chain complex

$$\Omega^{0}(M) \xrightarrow[\delta^{1}]{d^{0}} \Omega^{1}(M) \xrightarrow[\delta^{2}]{d^{1}} \Omega^{2}(M) \xrightarrow[\delta^{3}]{d^{2}} \Omega^{3}(M)$$

• de Rham cohomology  $H_{dR}^k = \ker d^k / \operatorname{im} d^{k-1}$ , and  $H_{dR}^k \cong \mathcal{H}_{\Delta}^k$ ,

$$\beta_k = \dim \mathcal{H}^k_{\Delta_t} = \dim \mathcal{H}^{3-k}_{\Delta_n}$$

MICHIGAN STATE

UNIVERSITY



| type       | $f^0$                 | $\mathbf{v}^1$                    | $\mathbf{v}^2$                    | $f^3$                 |
|------------|-----------------------|-----------------------------------|-----------------------------------|-----------------------|
| tangential | unrestricted          | $\mathbf{v}\cdot\mathbf{n}=0$     | $\mathbf{v} \parallel \mathbf{n}$ | $f _{\partial M} = 0$ |
| normal     | $f _{\partial M} = 0$ | $\mathbf{v} \parallel \mathbf{n}$ | $\mathbf{v}\cdot\mathbf{n}=0$     | unrestricted          |

► For tangential 0-forms or normal 3-forms,

 $\nabla_{\mathbf{n}} f|_{\partial M} = 0$ 

For tangential 1-forms or normal 2-forms,

 $\mathbf{v} \cdot \mathbf{n} = 0, \quad \nabla_{\mathbf{n}} (\mathbf{v} \cdot \mathbf{t}_1) + \kappa_1 (\mathbf{v} \cdot \mathbf{t}_1) = 0, \quad \nabla_{\mathbf{n}} (\mathbf{v} \cdot \mathbf{t}_2) + \kappa_2 (\mathbf{v} \cdot \mathbf{t}_2) = 0$ 

For tangential 2-forms or normal 1-forms,

 $\mathbf{v} \cdot \mathbf{t}_1 = 0, \quad \mathbf{v} \cdot \mathbf{t}_2 = 0, \quad \nabla_{\mathbf{n}} (\mathbf{v} \cdot \mathbf{n}) + 2H(\mathbf{v} \cdot \mathbf{n}) = 0$ 

For tangential 3-forms or normal 0-forms,

$$f|_{\partial M} = 0$$

MICHIGAN STATE

VFRS



Differential geometry, de Rham complex, and Hodge theory

#### 3 Evolutionary de Rham-Hodge Method

Discretization and numerical technique

#### 5 Results

# Manifold evolution

MICHIGAN STATE

#### The inclusion map $\mathfrak{I}_{l,l+1}: M_l \hookrightarrow M_{l+1}$ .

$$M_0 \xrightarrow{\mathfrak{I}_{0,1}} M_1 \xrightarrow{\mathfrak{I}_{1,2}} M_2 \xrightarrow{\mathfrak{I}_{2,3}} \cdots \xrightarrow{\mathfrak{I}_{n-1,n}} M_n \xrightarrow{\mathfrak{I}_{n,n+1}} M = M_{c_{\max}}.$$



### Persistence and progression

MICHIGAN STATE



- $\{\lambda_{l,i}^T\}$ ,  $\{\lambda_{l,i}^C\}$  and  $\{\lambda_{l,i}^N\}$  give the eigenvalues of the T, C and N sets respectively.
- ► The multiplicities of the zero eigenvalues in λ<sup>T</sup><sub>l,0</sub>, λ<sup>C</sup><sub>l,0</sub>, and λ<sup>N</sup><sub>l,0</sub> are associated with Betti numbers β<sub>0</sub>, β<sub>1</sub> and β<sub>2</sub>, respectively.
- $\lambda_{l,1}^T$ ,  $\lambda_{l,1}^C$ , and  $\lambda_{l,1}^N$  are the first non-zero eigenvalues

## Decomposition



Hodge decomposition

$$\Omega^k = d\Omega_n^{k-1} \oplus \delta\Omega_t^{k+1} \oplus \mathcal{H}^k,$$

For any  $\omega \in \Omega^k$ , a sum of three k-forms from the three orthogonal subspaces,

$$\omega = d\alpha_n + \delta\beta_t + h,$$

where  $\alpha_n\in\Omega_n^{k-1}\text{, }\beta_t\in\Omega_t^{k+1}\text{, and }h\in\mathcal{H}^k$ 



#### Motivation

- 2 Differential geometry, de Rham complex, and Hodge theory
- 3 Evolutionary de Rham-Hodge Method
- 4 Discretization and numerical technique

#### 5 Results

Discrete exterior calculus (DEC) is applied for the discretization of exterior derivatives done by Desbrun [3]. There are other methods can do the similar tasks such as finite element exterior calculus by Arnold [1].



Figure 4: A 3-manifold embedded in 3D Euclidean space is tessellated into a 3D simplicial complex.

# Simplex



21 / 32

The boundary operator  $\partial$  is defined as

$$\partial \sigma = \sum_{i=0}^{k} (-1)^{i} [v_0, v_1, ..., \hat{v}_i, ..., v_k],$$

where  $\hat{v}_i$  means that the *i*th vertex is removed and an oriented *k*-simplex  $\sigma = [v_0, v_1, ..., v_k]$ .



Figure 5: Pre-assigned orientation is colored in red. Induced orientation by  $\partial$  is colored in green.

The discrete Hodge star matrices  $S_k$  is just converting primal forms and dual forms by the following equation

$$\frac{1}{|\sigma_k|} \int_{\sigma_k} \omega = \frac{1}{|\ast \sigma_k|} \int_{\ast \sigma_k} \star \omega.$$



Figure 6: Illustration of the dual and primal elements of the tetrahedral mesh.

# Hodge Laplacian spectra



Figure 7: This figure shows the properties of 3 spectral groups, namely, tangential gradient eigenfields (T), normal gradient eigenfields (N),and curl eigenfields (C), for EMD 8962.

Jiahui Chen (MSU)

October 8, 2022 23 / 32

#### Motivation

- 2 Differential geometry, de Rham complex, and Hodge theory
- 3 Evolutionary de Rham-Hodge Method
- Discretization and numerical technique





Figure 8: Eigenvalues and Betti numbers vs isovalue (c) of the two-body system with  $\eta = 1.19$  and  $\max(\rho) \approx 1.0$ .

## Four-body system

# MICHIGAN STATE



Figure 9: Eigenvalues and Betti numbers vs isovalue (c) of the four-body system with  $\eta = 1.19$  and  $\max(\rho) \approx 1.2$ .

Jiahui Chen (MSU)

October 8, 2022 26 / 32

# Eight-body system

# MICHIGAN STATE



Figure 10: Eigenvalues and Betti numbers vs isovalue (c) of the eight-body system with  $\eta = 1.53$  and  $\max(\rho) \approx 1.1$ .

Jiahui Chen (MSU)

October 8, 2022 27 / 32

### Benzene molecule

# MICHIGAN STATE



Figure 11: Manifold evolution of benzene with  $\eta = 0.45 \times r_{\rm vdw}$ .

Jiahui Chen (MSU)

Hodge Laplacian and biological applicatic October 8

October 8, 2022 28 / 32

29 / 32

- ▶ Three unique sets of singular spectra associated with the tangential gradient eigen field (*T*), the curl eigen field (*C*), and the tangential divergent eigen field (*N*).
- The multiplicities of the zero eigenvalues corresponding to the T, C, and N sets of spectra are exactly the persistent Betti-0 (β<sub>0</sub>), Betti-1 (β<sub>1</sub>), and Betti-2 (β<sub>2</sub>) numbers one would obtain from persistent homology.
- ▶ The first non-zero eigenvalues, i.e., Fiedler values, of the *T*, *C*, and *N* sets of evolutionary spectra unveil both the persistence for topological features and the geometric progression for the shape analysis.

Thank you!

31 / 32

D. N. Arnold, R. S. Falk, and R. Winther. Finite element exterior calculus, homological techniques, and applications.

Acta numerica, 15:1–155, 2006.

- I. Bahar, A. R. Atilgan, and B. Erman. Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. *Folding and Design*, 2(3):173–181, 1997.

M. Desbrun, E. Kanso, and Y. Tong. Discrete differential forms for computational modeling. In *Discrete differential geometry*, pages 287–324. Springer, 2008.

#### K. O. Friedrichs.

Differential forms on riemannian manifolds.

*Communications on Pure and Applied Mathematics*, 8(4):551–590, 1955.

W. V. D. Hodge.

The theory and applications of harmonic integrals. CUP Archive, 1989.

K. Xia, X. Feng, Z. Chen, Y. Tong, and G.-W. Wei. Multiscale geometric modeling of macromolecules i: Cartesian representation.

Journal of Computational Physics, 257:912–936, 2014.

R. Zhao, M. Wang, Y. Tong, and G.-W. Wei. The de rham-hodge analysis and modeling of biomolecules. *arXiv preprint arXiv:1908.00572*, 2019.