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Motivation

Figure 1: a illustration of filtration, b Benzene molecule and the filtration process, c
EMD-1776, credits for a and b belongs to Rui Wang
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Persistent Homology

I Simplexes: (a) 0-simplex, (b) 1-simplex, (c) 2-simplex, (d) 3-simplex

(a) (b) (c) (d)

I k-chain: K = {
∑

j cjσ
k
j }

I Chain group: Ck(K,Z2)

I Boundary operator: ∂kσk =
∑k

i=0(−1)i[v0, · · · , v̂i, · · · , vq]
I Homology group: Hk = Zk

Bk
, Zk = ker ∂k, Bk = im ∂k+1

I Betti number: βk = Rank(Hk)
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Persistent Homology
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Hodge theory

3-dimensional volumes bounded by 2-manifolds in R3

Figure 2: PDB: 3VZ9, C-alpha atoms (yellow spheres) are considered in this case. [7]

Every cohomology class has a differential form that vanishes under the
Laplacian operator of the metric
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Differential geometry

Manifolds with boundary, (3-dimensional volumes bounded by 2-manifolds
in R3)

I A differential k-form ωk ∈ Ωk(M) is an antisymmetric covariant
tensor of rank k on manifold M

I The differential operator (i.e., exterior derivative) dk maps from a
k-form on manifold to a k + 1-form, dk : Ωk(M)→ Ωk+1(M)

I The Hodge k-star ?k (aka Hodge dual) is linear map from a k-form to
its dual form, ?k : Ωk(M)→ Ω3−k(M)

I The codifferential operators δk : Ωk(M)→ Ωk−1(M),
δk = (−1)k ?4−k d3−k?k, for k = 1, 2, 3

Jiahui Chen (MSU) Hodge Laplacian and biological applications October 8, 2022 10 / 32



de Rham complex

I The de Rham-Laplace operator, or Hodge Laplacian

∆k ≡ dk−1δk + δk+1dk

I de Rham complex

0 Ω0(M) Ω1(M) Ω2(M) Ω3(M) 0d0 d1 d2 d3

I Bi-directional chain complex

Ω0(M) Ω1(M) Ω2(M) Ω3(M)
d0 d1

δ1

d2

δ2 δ3

I de Rham cohomology Hk
dR = ker dk/im dk−1, and Hk

dR
∼= Hk∆,

βk = dimHk∆t
= dimH3−k

∆n
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Exterior calculus vs. traditional calculus

point-based
scalar field

edge-based
vector field

face-based
vector field

cell-based
scalar field

point-based
scalar field

edge-based
vector field

face-based
vector field

cell-based
scalar field
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Boundary condition in vector representation

type f0 v1 v2 f3

tangential unrestricted v · n = 0 v ‖ n f |∂M = 0
normal f |∂M = 0 v ‖ n v · n = 0 unrestricted

I For tangential 0-forms or normal 3-forms,

∇nf |∂M = 0

I For tangential 1-forms or normal 2-forms,

v · n = 0, ∇n(v · t1) + κ1(v · t1) = 0, ∇n(v · t2) + κ2(v · t2) = 0

I For tangential 2-forms or normal 1-forms,

v · t1 = 0, v · t2 = 0, ∇n(v · n) + 2H(v · n) = 0

I For tangential 3-forms or normal 0-forms,

f |∂M = 0
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Manifold evolution

The inclusion map Il,l+1 : Ml ↪→Ml+1.

M0 M1 M2 · · · Mn M = Mcmax .
I0,1 I1,2 I2,3 In−1,n In,n+1
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Persistence and progression

(a) Persistence (b) Persistence and progression

(c) Identity map (d) Progression

Figure 3: Persistence and progression on benzene.
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Spectra representations

I {λTl,i}, {λCl,i} and {λNl,i} give the eigenvalues of the T , C and N sets
respectively.

I The multiplicities of the zero eigenvalues in λTl,0, λCl,0, and λNl,0 are
associated with Betti numbers β0, β1 and β2, respectively.

I λTl,1, λCl,1, and λNl,1 are the first non-zero eigenvalues
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Decomposition

I Hodge decomposition

Ωk = dΩk−1
n ⊕ δΩk+1

t ⊕Hk,
I For any ω ∈ Ωk, a sum of three k-forms from the three orthogonal

subspaces,
ω = dαn + δβt + h,

where αn ∈ Ωk−1
n , βt ∈ Ωk+1

t , and h ∈ Hk

a b
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Discrete exterior calculus

Discrete exterior calculus (DEC) is applied for the discretization of exterior
derivatives done by Desbrun [3]. There are other methods can do the
similar tasks such as finite element exterior calculus by Arnold [1].

Figure 4: A 3-manifold embedded in 3D Euclidean space is tessellated into a 3D
simplicial complex.
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Simplex

The boundary operator ∂ is defined as

∂σ =

k∑
i=0

(−1)i[v0, v1, ..., v̂i, ..., vk],

where v̂i means that the ith vertex is removed and an oriented k-simplex
σ = [v0, v1, ..., vk].

+1

-1

+1-1

-1

-1
+1

+1

-1

Figure 5: Pre-assigned orientation is colored in red. Induced orientation by ∂ is colored
in green.
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Dual elements

The discrete Hodge star matrices Sk is just converting primal forms and
dual forms by the following equation

1

|σk|

∫
σk

ω =
1

| ∗ σk|

∫
∗σk

?ω.

Figure 6: Illustration of the dual and primal elements of the tetrahedral mesh.
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Hodge Laplacian spectra

a b c d
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Figure 7: This figure shows the properties of 3 spectral groups, namely, tangential
gradient eigenfields (T ), normal gradient eigenfields (N),and curl eigenfields (C), for
EMD 8962.
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Two-body system

Figure 8: Eigenvalues and Betti numbers vs isovalue (c) of the two-body system with
η = 1.19 and max(ρ) ≈ 1.0.
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Four-body system

Figure 9: Eigenvalues and Betti numbers vs isovalue (c) of the four-body system with
η = 1.19 and max(ρ) ≈ 1.2.
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Eight-body system

Figure 10: Eigenvalues and Betti numbers vs isovalue (c) of the eight-body system with
η = 1.53 and max(ρ) ≈ 1.1.
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Benzene molecule

10-1

102

Figure 11: Manifold evolution of benzene with η = 0.45× rvdw.
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Conclusion

I Three unique sets of singular spectra associated with the tangential
gradient eigen field (T ), the curl eigen field (C), and the tangential
divergent eigen field (N).

I The multiplicities of the zero eigenvalues corresponding to the T , C,
and N sets of spectra are exactly the persistent Betti-0 (β0), Betti-1
(β1), and Betti-2 (β2) numbers one would obtain from persistent
homology.

I The first non-zero eigenvalues, i.e., Fiedler values, of the T , C, and N
sets of evolutionary spectra unveil both the persistence for topological
features and the geometric progression for the shape analysis.
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Questions

Thank you!
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