Mathematics-AI for Protein-Protein Interactions

Jiahui Chen

Assistant Professor, Department of Mathematical Sciences, University of Arkansas

October 5, 2023

@ Data Science and Statistics Seminar, University of Tennessee

Protein-Protein Interaction Upon Mutation

- Emerging Variant Prediction
- Antibody-Antigen Interactions and Vaccine Efficacy

Biological Shape Representation

- Persistent Homology and Persistent Laplacian
- Evolutionary de Rham-Hodge Method
 - Results

Protein-Protein Interaction Upon Mutation

- Emerging Variant Prediction
- Antibody-Antigen Interactions and Vaccine Efficacy

2 Biological Shape Representation

- Persistent Homology and Persistent Laplacian
- Evolutionary de Rham-Hodge Method
 - Results

COVID-19

COVID-19 shows the importance of biosciences

UNIVERSITY OF

The Distribution of SARS-COV-2 Mutations

ARKANSAS

SARS-CoV-2 Life Cycle

UNIVERSITY OF

Jiahui Chen (Uark)

Mathematics-AI for Protein-Protein Interactions

October 5, 2023 7 / 42

Spike Protein and PPI

Mutations Strengthened SARS-CoV-2 Infectivity

We predicted prevailing SARS-CoV-2 variants to occur at residues 452 and 501

Jiahui Chen¹, Rui Wang¹, Menglun Wang¹ and Guo-Wei Wei^{1,2,3}

1 - Department of Mathematics, Michigan State University, MI 48824, USA

2 - Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA

3 - Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA

Correspondence to Guo-Wei Wei: wei@math.msu.edu https://doi.org/10.1016/j.jmb.2020.07.009 Edited by Anna Panchenko Received 4 June 2020; Received in revised form 9 July 2020; Accepted 17 July 2020 Available online 23 July 2020

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is a major concern in coronavirus disease 2019 (COVID-19) prevention and economic reopening. However, rigorous determination of SARS-CoV-2 infectivity is very difficult woing to its continuous evolution with over 10,000 single nucleotide polymorphisms (SNP) variants in many subtypes. We employ an <u>algebraic topology-based</u> machine learning model to quantitatively evaluate the binding free energy changes of SARS-CoV-2 spike glycoprotein (S protein) and host angiotensinconverting enzyme 2 receptor following mutations. We reveal that the SARS-CoV-2 virus becomes more infectious. Three out of six SARS-CoV-2 subtypes have become slightly more infectious, while the other three subtypes have significantly strengthened their infectivity. We also find that SARS-CoV-2 is slightly more infectious than SARS-CoV according to computed S protein-angiotensin-converting enzyme 2 binding free energy changes. Based on a systematic evaluation of all possible 3886 future mutations on the S protein receptor-binding domain, we show that analysis, and binding free energy calculation, we predict that a few residues on the receptor-binding motif, i.e., 452, 489, 500, 501, and 505, have high chances to mutate into significantly more infectious COVID-19 strains.

UNIVERSITY OF ARKANSAS

Predict the key RBD mutation sites in prevailing variants. Mutations at 452 and 501 in prevailing SARS-CoV-2 variants.

Infectivity strengthening mutations (blue) increase fester than infectivity weakening ones (red) over time.

Natural selection favors those mutations that enhance the viral transmission and evolution

Jiahui Chen (Uark)

Omicron BA.2 (B.1.1.529.2): high potential to becoming the next

dominating variant

Jiahui Chen¹ and Guo-Wei Wei^{1,3,4*}

¹ Department of Mathematics,

Michigan State University, MI 48824, USA.

² Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA.

³ Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA.

February 11, 2022

WHO comfirmed it on March 26, 2022

Abstract

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly replaced the Delta variant as a dominating SARS-CoV-2 variant because of natural selection, which favors the variant with higher infectivity and stronger vaccine breakthrough ability. Omicron has three lineages or subvariants, BA.1 (B.1.1.529.1), BA.2 (B.1.1.529.2), and BA.3 (B.1.1.529.3). Among them, BA.1 is the currently prevailing subvariant. BA.2 shares 32 mutations with BA.1 but has 28 distinct ones, BA.3 shares most of its mutations with BA.1 and BA.2 except for one. BA.2 is found to be able to alarmingly reinfect patients originally infected by Omicron BA.1. An important question is whether BA.2 or BA.3 will become a new dominating "variant of concern". Currently, no experimental data has been reported about BA.2 and BA.3. We construct a novel algebraic topology-based deep learning model trained with tens of thousands of mutational and deep mutational data to systematically evaluate BA.2's and BA.3's infectivity, vaccine breakthrough capability, and antibody resistance. Our comparative analysis of all main variants namely, Alpha, Beta, Gamma, Delta, Lambda, Mu, BA.1, BA.2, and BA.3, unveils that BA.2 is about 1.5 and 4.2 times as contagious as BA.1 and Delta, respectively. It is also 30% and 17-fold more capable than BA.1 and Delta, respectively, to escape current vaccines. Therefore, we project that Omicron BA.2 is on its path to becoming the next dominating variant. We forecast that like Omicron BA.1, BA.2 will also seriously compromise most existing mAbs, except for sotrovimab developed by GlaxoSmithKline.

All predictions has been confirmed within 50 days!

Keywords: COVID-19, SARS-CoV-2, Omicron, infectivity, antibody-resistance, vaccine breakthrough,

[Chen, Wei, J. Phys. Chem. Lett., 2022]

Omicron Variant Experimental Comparison

[Chen, Wei, J. Phys. Chem. Lett., 2022]

[Wang, Emerg. Microbes Infect., 2022]

Persistent Laplacian projected Omicron BA.4 and BA.5 to become new dominating variants

 Jiahui Chen¹, Yuchi Qiu¹, Rui Wang¹, and Guo-Wei Wei^{1,2,3*}
 ¹ Department of Mathematics, Michigan State University, MI 48824, USA. East Lansing, MI 48823 USA.
 ² Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA.
 ³ Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA.

 WHO confirmed it on late June, 2022 May 3, 2022

Abstract

Due to its high transmissibility, Omicron BA.1 ousted the Delta variant to become a dominating variant in late 2021 and was replaced by more transmissible Omicron BA.2 in March 2022. An important question is which new variants will dominate in the future. Topology-based deep learning models have had tremendous success in forecasting emerging variants in the past. However, topology is insensitive to homotopic shape variations in virus-human protein-protein binding, which are crucial to viral evolution and transmission. This challenge is tackled with persistent Laplacian, which is able to capture both the topology and shape of data. Persistent Laplacian-based deep learning models are developed to systematically evaluate variant infectivity. Our comparative analysis of Alpha, Beta, Gamma, Delta, Lambda, Mu, and Omicron BA.1, BA.1, BA.2, BA.2, 11, BA.2, 12.1, BA.3, BA.4, and BA.5 unveils that Omicron BA.2.11, BA.2, 12.1, BA.3, BA.4, and BA.5 are more contagious than BA.2. In particular, BA.4 and BA.5 are about 36% more infectious than BA.2 and are projected to become new dominating variants by natural selection. Moreover, the proposed models outperform the state-of-the-art methods on three major benchmark datasets for mutation-induced protein-protein binding free energy changes.

Keywords: SARS-CoV-2, evolution, infectivity, deep learning, persistent Laplacian.

*Corresponding author. Email: weig@msu.edu

[Chen, Qiu, Wang, Wei, Comput. Biol. Med., 2022]

History of Omicron Variant Predictions

October 5, 2023 15 / 42

Math-AI Model for Binding Free Energy

UNIVERSITY OF ARKANSAS

Validation of AI Predictions with Experiments

UNIVERSITY OF

Antibody therapy

FDA emergency use authorization: REGN10933, REGN10987, LY-CoV016; In clinical trial: CT-P59, C144, C135

The top 100 most observed out of 712 RBD

mutations from 506,768 patient genome sequences

[Chen, et al., JMB 2021]

130 Antibodies

UNIVERSITY OF

Jiahui Chen (Uark)

Mathematics-AI for Protein-Protein Interactions

October 5, 2023 20 / 42

Vaccine-Resistant Mutations

UNIVERSITY OF

ARKANSAS

Model Revisit

UNIVERSITY OF ARKANSAS

October 5, 2023 22 / 42

Protein-Protein Interaction Upon Mutation

- Emerging Variant Prediction
- Antibody-Antigen Interactions and Vaccine Efficacy

Biological Shape Representation

- Persistent Homology and Persistent Laplacian
- Evolutionary de Rham-Hodge Method
 - Results

Persistent Homology

UNIVERSITY OF

24 / 42

- Simplexes: 0-, 1-, 2-, 3-simplex
- Simplicial complex: K
- k-chain: $\sum_j c_j \sigma_j^k$
- Chain group: $C_k(K)$

- Boundary operator: $\partial_k \sigma_k = \sum_{i=0}^k (-1)^i [v_0, \cdots, \hat{v_i}, \cdots, v_q]$
- ► Homology group: $H_k = \frac{Z_k}{B_k}$, $Z_k = \ker \partial_k$, $B_k = \operatorname{im} \partial_{k+1}$
- Betti number: $\beta_k = \mathsf{Rank}(H_k)$

[Edelsbrunner et al., IEEE 2000, Zomorodian et al., DCG 2005, Carlsson et al., Bull. Am. Math. 2009, Ghrist, Bull. Am. Math. 2008, ...]

Persistent Laplacian

• Coboundary operator: $\partial_k^* : C_{k-1}(K) \to C_k(K)$

• Laplacian:
$$\Delta_k = \partial_{k+1}\partial_{k+1}^* + \partial_k^*\partial_k$$

• Spectrum of Laplacian: $Spec(\Delta_k) = \{\lambda_k^1, \lambda_k^2, \lambda_k^3, ...\}$

[Wang et al., IJNMBE 2020, Wang et al., FDS 2021, Chen et al., CBM 2022, ...]

Motivation for Evolutionary de Rham Hodge

4 3 β_0 2 λ_0^{-1} 1 0.5 0.0 1.0 1.5 2.5 3.0 4 3 β_1 2 λ_1^{-1} 1 0.5 1.0 1.5 2.0 2.5 3.0 0.0

UNIVERSITY OF

ARKANSAS

Hodge theory

UNIVERSITY OF ARKANSAS

3-dimensional volumes bounded by 2-manifolds in \mathbb{R}^3

- Every cohomology class has a differential form that vanishes under the Laplacian operator of the metric
- Hodge decomposition

Manifolds with boundary, (3-dimensional volumes bounded by 2-manifolds in \mathbb{R}^3)

- A differential k-form $\omega^k \in \Omega^k(M)$
- The differential operator (i.e., exterior derivative) $d^k : \Omega^k(M) \to \Omega^{k+1}(M)$
- ▶ The Hodge k-star \star^k (aka Hodge dual) $\star^k : \Omega^k(M) \to \Omega^{3-k}(M)$
- The codifferential operators $\delta^k : \Omega^k(M) \to \Omega^{k-1}(M)$, $\delta^k = (-1)^k \star^{4-k} d^{3-k} \star^k$, for k = 1, 2, 3

de Rham Complex

UNIVERSITY OF ARKANSAS

The de Rham-Laplace operator, or Hodge Laplacian

$$\Delta^k \equiv d^{k-1}\delta^k + \delta^{k+1}d^k$$

de Rham complex

$$0\, \to\, \Omega^0(M)\, \stackrel{d^0}{\to}\, \Omega^1(M)\, \stackrel{d^1}{\to}\, \Omega^2(M)\, \stackrel{d^2}{\to}\, \Omega^3(M)\, \stackrel{d^3}{\to}\, 0$$

Bi-directional chain complex

$$\Omega^{0}(M) \xrightarrow[\delta^{1}]{d^{0}} \Omega^{1}(M) \xrightarrow[\delta^{2}]{d^{1}} \Omega^{2}(M) \xrightarrow[\delta^{3}]{d^{2}} \Omega^{3}(M)$$

▶ de Rham cohomology $H_{dR}^k = \ker d^k / \operatorname{im} d^{k-1}$, and $H_{dR}^k \cong \mathcal{H}_{\Delta}^k$,

$$\beta_k = \dim \mathcal{H}^k_{\Delta_t} = \dim \mathcal{H}^{3-k}_{\Delta_n}$$

The inclusion map $\mathfrak{I}_{l,l+1}: M_l \hookrightarrow M_{l+1}$.

 $M_0 \xrightarrow{\mathfrak{I}_{0,1}} M_1 \xrightarrow{\mathfrak{I}_{1,2}} M_2 \xrightarrow{\mathfrak{I}_{2,3}} \cdots \xrightarrow{\mathfrak{I}_{n-1,n}} M_n \xrightarrow{\mathfrak{I}_{n,n+1}} M = M_{c_{\max}}.$

Persistence and Progression

UNIVERSITY OF ARKANSAS

Figure 1: Persistence and progression on benzene.

- $\{\lambda_{l,i}^T\}$, $\{\lambda_{l,i}^C\}$ and $\{\lambda_{l,i}^N\}$ give the eigenvalues of the Laplacians.
- ► The multiplicities of the zero eigenvalues in λ^T_{l,0}, λ^C_{l,0}, and λ^N_{l,0} are associated with Betti numbers β₀, β₁ and β₂, respectively.
- ▶ $\lambda_{l,1}^T$, $\lambda_{l,1}^C$, and $\lambda_{l,1}^N$ are the first non-zero eigenvalues

Discrete Exterior Calculus (DEC) by [Desbrun2008]; Finite Element Exterior Calculus (FEEC) by [Arnold2006].

Figure 2: A 3-manifold embedded in 3D Euclidean space is tessellated into a 3D simplicial complex (Delaunay triangulation).

Simplex

The boundary operator ∂ is defined as

$$\partial \sigma = \sum_{i=0}^{k} (-1)^{i} [v_0, v_1, ..., \hat{v}_i, ..., v_k],$$

where \hat{v}_i means that the *i*th vertex is removed and an oriented *k*-simplex $\sigma = [v_0, v_1, ..., v_k].$

Figure 3: Pre-assigned orientation is colored in red. Induced orientation by ∂ is colored in green.

UNIVERSITY OF ARKANSAS

The discrete Hodge star matrices S_k is just converting primal forms and dual forms by the following equation

$$\frac{1}{|\sigma_k|}\int_{\sigma_k}\omega=\frac{1}{|\ast\sigma_k|}\int_{\ast\sigma_k}\star\omega.$$

Figure 4: Illustration of the dual (Voronoi diagram) and primal elements (Delaunay triangulation) of the tetrahedral mesh.

Figure 5: Eigenvalues and Betti numbers vs isovalue (c) of the two-body system with $\eta = 1.19$ and $\max(\rho) \approx 1.0$.

Eight-body System

UNIVERSITY OF ARKANSAS

Harmonic (topology) and non-harmonic spectra

Biology Applications

Publication

- Chen et al., Emerging dominant SARS-CoV-2 variants, JCIM, 2023
- 2) Chen et al., A Cartesian FMM-accelerated Galerkin boundary integral Poisson-Boltzmann solver, JCP, 2023
- Chen et al., Persistent Laplacian projected Omicron BA. 4 and BA. 5 to become new dominating variants, CBM, 2022
- Wilson et al., Computing electrostatic binding energy with the TABI Poisson-Boltzmann solver, CIS, 2022
- Chen et al., Omicron BA.2 (B.1.1.529.2): high potential to becoming the next dominating variant, JPCL, 2022
- Chen et al., Mathematical artificial intelligence design of mutation-proof COVID-19 monoclonal antibodies, CIS, 2022
- Gao et al., Methodology-centered review of molecular modeling, simulation, and prediction of SARS-CoV-2, Chem. Rev., 2022
- B Chen et al., Omicron variant (B.1.1.529): Infectivity, vaccine breakthrough, and antibody resistance, JCIM, 2022
- Wang et al., Emerging vaccine-breakthrough SARS-CoV-2 variants, ACS infectious diseases, 2021
- Image of the second second
- Wang et al., Mechanisms of SARS-CoV-2 evolution revealing vaccine-resistant mutationsin Europe and America, JPCL, 2021
- 2 Chen et al., MLIMC: Machine learning-based implicit-solvent Monte Carlo, CJCP, 2021
- **B** Chen et al., Revealing the threat of emerging SARS-CoV-2 mutations to antibody therapies, JMB, 2021
- Wang et al., Vaccine-escape and fast-growing mutations in the United Kingdom, the United States, Singapore, Spain, India, and other COVID-19-devastated countries, Genomics, 2021
- Chen et al., Prediction and mitigation of mutation threats to COVID-19 vaccines and antibody therapies, Chemical Science, 2021
- Wang et al., HERMES: persistent spectral graph software, FDS, 2021

Publication

- Strubbe-Rivera et al., Modeling the effects of calcium overload on mitochondrial ultrastructural remodeling, Applied Sciences, 2021
- Wang et al., Analysis of SARS-CoV-2 mutations in the United States suggests presence of four substrains and novel variants, Communications biology, 2021
- 19 Chen et al., SARS-CoV-2 becoming more infectious as revealed by algebraic topology and deep learning, CIS, 2021
- Chen et al., Cyclically parallelized treecode for fast computations of electrostatic interactions on molecular surfaces, CPC, 2021
- Deen et al., Computing protein pKas using the TABI Poisson-Boltzmann Solver, JCBC, 2020
- 22 Wang et al., Decoding asymptomatic COVID-19 infection and transmission, JPCL, 2020
- 20 Chen et al., Mutations strengthened SARS-CoV-2 infectivity, JMB, 2020
- 20 Zhao et al., The de Rham-Hodge analysis and modeling of biomolecules, BMB, 2020
- 25 Chen et al., Review of COVID-19 antibody therapies, ARB, 2020
- 26 Gao et al., Repositioning of 8565 existing drugs for COVID-19, JPCL, 2020
- In Nguyen et al., Unveiling the molecular mechanims of SARS-CoV-2 main protease inhibition from 137 crystal structures using algebraic topology and deep learning, Chemical Science, 2020
- 28 Chen et al., Eveolutionary de Rham-Hodge method, DCDS-B, 2020
- Chen et al., On preconditioning the Treecode-accelerated boundary integral (TABI) Poisson-Boltzmann solver, JCP, 2018
- 30 Jurrus et al., Improvements to the APBS Biomolecular Solvation Software Suite, Protein science, 2018
- **Chen** et al., *Parallel Computing of the Adaptive N-body Treecode Algorithm for Solving Boundary Integral Poisson-Boltzmann Equation*, Lecture Notes in Computer Science, 2016

Thank you!