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Abstract

We study the parallelization of a flexible order Cartesian treecode algorithm for evaluating
electrostatic potentials of charged particle systems in which N particles are located on the molec-
ular surfaces of biomolecules such as proteins. When the well-separated condition is satisfied,
the treecode algorithm uses a far-field Taylor expansion to compute O(N logN) particle-cluster
interactions to replace the O(N2) particle-particle interactions. The algorithm is implemented
using the Message Passing Interface (MPI) standard by creating identical tree structures in the
memory of each task for concurrent computing. We design a cyclic order scheme to uniformly
distribute spatially-closed target particles to all available tasks, which significantly improves par-
allel load balancing. We also investigate the parallel efficiency subject to treecode parameters
such as Taylor expansion order p, maximum particles per leaf N0, and maximum acceptance cri-
terion θ. This cyclically parallelized treecode can solve interactions among up to tens of millions
of particles. However, if the problem size exceeds the memory limit of each task, a scalable do-
main decomposition (DD) parallelized treecode using an orthogonal recursive bisection (ORB) tree
can be used instead. In addition to efficiently computing the N -body problem of charged parti-
cles, our approach can potentially accelerate GMRES iterations for solving the boundary integral
Poisson-Boltzmann equation.
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1 Introduction

Pairwise interactions among N particles/objects are ubiquitous. These interactions arise in various
forms in applications as varied as astrophysics [1], fluid dynamics [2], statistical machine learning
[3], electrodynamics [4, 5], low-frequency scattering [6], and linear elasticity [7]. Since brute-force
computation of these interactions has O(N2) complexity, which is prohibitively expensive when N
is large, numerous fast algorithms have been developed to reduce the computational cost. These
algorithms can be categorized into mesh-based methods [8], and tree-based methods [1, 4, 5, 7, 9, 10].
Tree-based methods have shown tremendous promise in both efficiency and accuracy, and can be
further categorized into roughly the particle-cell method [1, 9] and the cell-cell method [4, 10]. In
tree-based methods, particles are partitioned into a hierarchy of clusters having a tree structure,
allowing the pairwise particle-particle interactions to be calculated more efficiently. For example, in
the treecode method [5, 9] particle-particle interactions are replaced by particle-cluster interactions;
these can then be evaluated using a far-field multipole expansion when certain criteria are satisfied.
Similarly, the fast multipole method (FMM) [4,7,11–15] is a more elaborate procedure that evaluates
cluster-cluster interactions using both far-field and near-field expansions.

In principle, for a given order of expansion, the treecode algorithm requires O(N logN) execution
time and the FMM requires O(N) execution time. However, the performance of an algorithm is
also determined by the size of pre-factor, memory usage, coding complexity, and parallelizability. In
practice, several factors can affect the observed performance, including the number of levels in the
tree, the homogeneity or sparseness of the particle distribution, and the cache size of the computer.
Optimizing these methods and extending them to new applications are active areas of research.
Recently, increased attention has been given to the parallelization of these fast algorithms in response
to the rapid development of multicore computers. These efforts have included parallel algorithms for
treecode [16–20] and FMM [11,13,14,21–24], as well as their implementations on GPUs [25,26].

Recently, a flexible order Cartesian treecode algorithm [5, 27] was developed for efficiently com-
puting N-body interactions based on Barnes-Hut’s tree structure [9]. This treecode algorithm has the
following important features, which make the challenging task of studying dynamics on large-scale
problems possible.
(1) Treecode uses particle-cluster interactions to replace the particle-particle interactions for far-field
interactions, thereby significantly reducing the computational cost from O(N2) to O(N logN).
(2) In treecode, the far-field expansion uses a Cartesian Taylor expansion, with Taylor coefficients
computed using effective recurrence relations. The accuracy of the treecode approximation may there-
fore be flexibly controlled by the order of this Taylor expansion.
(3) Treecode has been applied widely to a variety of N-body problems, including Vortex Sheet [28],
Ewald Summation [29], Radial Basis function [30], Plasma simulation [31], and Screened Coulomb
potential [5,32]. It has also been extended to solving PDEs using a boundary integral formulation [33].
(4) The key advantages of the treecode algorithm compared with the popular FMM [4] are its ease of
implementation, memory savings (an O(N) cost with a small pre-factor), and efficient parallelization.

In this paper, we focus on strategies to improve the parallel performance of this flexible order
Cartesian treecode algorithm [5,27]. Our main work is on developing a cyclically parallelized treecode,
which is easy to implement with high parallel efficiency. By building the entire tree in the memory of
each task, this cyclically parallelized treecode can rapidly compute interactions among tens of millions
of particles. However, if the problem size exceeds the memory limit of each task, a scalable domain
decomposition (DD) parallelized treecode using an orthogonal recursive bisection (ORB) tree can be
used instead. Although the approach applies to general N-body problems, we particularly focus on the
electrostatic interaction among charges distributed on the molecular surface [34,35] of proteins, which
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resembles the induced charges on each element when the molecular surface is discretized by triangles.
Fast computation of such interactions forms a critical step toward efficient solution of the boundary
integral Poisson-Boltzmann equation, as well as to efficient computation of the electrostatic potential
at any spacial location [33]. In addition to computing the induced surface charge interactions on
proteins, the current study has many other applications. For example, the parallelization strategy
used here can be conveniently extended to other kernels and structures. Furthermore, computation of
Coulomb interactions for the more accurate point multipole model (instead of the widely-used point
partial charge model) demand highly efficient algorithms for computing N-body interactions [36,37].

The rest of this paper is organized as follows. In section 2, we provide our treecode algorithm
and MPI-based parallelization schemes, paying particular attention to the cyclic ordering scheme for
optimal load balancing. In section 3, we provide numerical results examining parallel performance
on one selected protein with different treecode parameters for both sequential order and cyclic order,
then on a series of proteins with various sizes and geometries. This paper ends with a section of
concluding remarks.

2 Methods

In this section, we first briefly go over the flexible order Cartesian treecode algorithm (for further
details see [5]), then provide our scheme for MPI-based parallelization, followed by the cyclic ordering
scheme for improved load balance.

2.1 Treecode for electrostatic interactions

For a system of N particles located at xi with partial charges qi, i = 1, . . . , N , we denote the induced
potential at xi by

Vi =
N∑

j=1,j 6=i
qiG(xi,xj), (1)

where G(x,y) is the Coulomb or the screened Coulomb potential, defined respectively by

G0(x,y) =
1

4π|x− y|
(2)

and

Gκ(x,y) =
e−κ|x−y|

4π|x− y|
. (3)

Note we attempted to use CGI units here but supply the additional 4π coefficient in the denominator
to represent electrostatic potential generated from partial charges with units of fundamental charges,
as from most force field generators such as CHARMM [38] and AMBER [39].

The cost of evaluating Vi for i = 1, . . . , N by direct summation is O(N2), which is prohibitively
expensive when N is large. This cost can be substantially reduced through the treecode algorithm,
without significant loss of accuracy.

2.1.1 Particle-cluster interaction

We assume that the particles have been partitioned into a hierarchy of clusters as illustrated in
Fig 1(a). In the partition process, each cluster (a rectangle in 2-D or a rectangular parallelepiped in
3-D) is divided into four (or eight for 3-D) sub-clusters until the pre-determined treecode parameter
N0, the maximum number of particles per leaf (a cluster without sub-clusters), is satisfied. Here we

3



(a) (b)

q
q

q qq q
qq q q qq

qq q
qqq qq q

q q qq
q q qqq q q

q
xi

c

b
yc

q
q

q
q

q

q
q yjq
q

R

@
@

@
@@

rc

Figure 1: Details of treecode; (a) tree structure of particle clusters; (b) particle-cluster interaction between particle
xi and cluster c = {yj}; yc is the cluster center, R is the particle-cluster distance, and rc is the cluster radius.

illustrate in 2-D using N0 = 3; the more practical 3-D case is similar. Treecode evaluates the potential
in Eq. (1) as a sum of particle-cluster interactions,

Vi =
∑
c

Vi,c, (4)

where
Vi,c =

∑
yj∈c

qj G(xi,yj) (5)

is the interaction between a target particle xi and a cluster of sources c = {yj}. A particle-cluster
interaction is shown schematically in Fig. 1(b): the cluster center, yc, is the geometric center of the
rectangle; R is the particle-cluster distance; and the cluster radius, rc, is the distance from yc to one
of the vertices of the rectangle.

The treecode algorithmn has two options for computing a particle-cluster interaction Vi,c. It can
use direct summation as in the definition Eq. (5), or Taylor approximation as in Eq. (9). In practice,
the Taylor approximation is used if the following criterion is satisfied,

rc
R
≤ θ, (6)

where θ is a user-specified Maximum Acceptance Criterion (MAC) parameter for controlling the
error [9]. If the criterion is not satisfied, the code examines the children or sub-clusters of cluster c,
or it performs direct summation if c is a leaf of the tree.

While this discussion has focused on the problem of evaluating the electrostatic potential Vi,
similar considerations apply to computations of the electric field Ei = −∇Vi, where treecode can also
be applied.

2.1.2 Cartesian Taylor expansion

If the particle xi and cluster c are well-separated, i.e. the MAC (6) has been satisfied, then the terms
in Eq. (5) can be expanded in a Taylor series with respect to y about yc,

G(xi,yj) =

∞∑
‖k‖=0

1

k!
Dk

yG(xi,yc)(yj − yc)
k, (7)

where Cartesian multi-index notation has been used with k = (k1, k2, k3), ki ∈ N, ‖k‖ = k1 + k2 + k3,
k! = k1!k2!k3!, y = (y1, y2, y3), yi ∈ R, yk = yk11 y

k2
2 y

k3
3 , and Dk

y = Dk1
y1D

k2
y2D

k3
y3 . The Taylor expansion
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Eq. (7) converges for rc < R, and it plays the same role in treecode as the far-field multipole expansion
in FMM. Substituting Eq. (7) into Eq. (5) yields

Vi,c =
∑
yj∈c

qj

∞∑
‖k‖=0

1

k!
Dk

yG(xi,yc)(yj − yc)
k =

∞∑
‖k‖=0

1

k!
Dk

yG(xi,yc)
∑
yj∈c

qj(yj − yc)
k (8)

≈
p∑

‖k‖=0

ak(xi,yc)m
k
c , (9)

where the Taylor series has been truncated at order p,

ak(xi,yc) =
1

k!
Dk

yG(xi,yc) (10)

is the kth Taylor coefficient of the potential, and

mk
c =

∑
yj∈c

qj(yj − yc)
k (11)

is the kth moment of cluster c. Note that the Taylor coefficients ak(xi,yc) are independent of the
sources yj in cluster c, and the cluster moments mk

c are independent of the target xi. These features
may be exploited to reduce execution time.

2.1.3 Recurrence relation

Explicit formulas for the Taylor coefficients of the Coulomb and screened Coulomb potentials in
Eq. (10) would be cumbersome to evaluate. However, we may leverage recurrence relations to effi-
ciently computate these coefficients to high order [5,28]. To this end, we define an auxiliary function
and its Taylor coefficients,

ψ(x,y) = e−κ|x−y|, bk(x,y) =
1

k!
Dk

yψ(x,y). (12)

With these functions, the recurrence relations are given by [5]

‖k‖|x− y|2ak − (2‖k‖ − 1)
3∑
i=1

(xi − yi)ak−ei + (‖k‖ − 1)
3∑
i=1

ak−2ei

= κ
( 3∑
i=1

(xi − yi)bk−ei −
3∑
i=1

bk−2ei
)
, (13)

‖k‖bk = κ
( 3∑
i=1

(xi − yi)ak−ei −
3∑
i=1

ak−2ei
)
, (14)

for ‖k‖ ≥ 2, where ei are the Cartesian basis vectors. Note that although the equations for ak and bk

are coupled, these can be solved by explicit marching; the values of ak, bk for ‖k‖ = 0, 1 are computed
from the definitions, and then the recurrence relations are applied to compute the coefficients for ‖k‖ ≥
2. The computational cost of these recurrence relations for the screened Coulombic interaction/kernel
is O(p3). We further note that Tausch [7] has developed similar recurrence relations for arbitrary
Green’s functions of Cartesian based FMM having O(p4) complexity.
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Table 1: Pseudocode for MPI-based parallel treecode for electrostatic potential using replicated data.

1 on the main task:
2 read protein geometry data (atom locations)
3 generate triangulation, and assign particles at triangle centroids with unit charges
4 copy particle locations to all other tasks
5 on each task:
6 build local copy of tree and compute moments
7 compute assigned segment/group of source terms by direct sum
8 compute assigned segment/group of particle-cluster interaction by treecode
9 copy result to the main task

10 on the main task:
11 add segments/groups of all interactions and output result

2.2 MPI-based parallelization

In designing our MPI-based parallelization strategy, we point out that treecode requires low O(N)
memory usage, and our focus is on computing interactions between induced charges on triangular
elements characterizing molecular surfaces. We therefore store an identical copy of the entire tree
on each MPI task (even for very large systems), permitting the application of a simple replicated
data algorithm. Assuming that each MPI task has 24GB of available memory, our parallel algorithm
can handle interactions between about 20 million charged particles, which is more than needed in
this biological scenario. However, we note that for some three-dimensional applications, e.g. in astro-
physics, which have much larger numbers of particles, this approach of tree replication will rapidly
limit scalability. To this end, we can alternatively apply a scalable domain decomposition (DD) par-
allelized treecode using an orthogonal recursive bisection (ORB) tree [40]. Numerical results using
both treecode parallelization strategies are provided for comparison.

In treecode, we loop over target particles, and each particle can be treated as an independent
interaction with the tree, whose copies are available on every task. Hence our implementation divides
the particle array into np segments (for the sequential scheme, see below) or groups (for the cyclic
scheme, see below) of size N/np, where np is the number of tasks, and the segments/groups are
processed concurrently. The pseudocode is shown in Table 1. Communications are handled using the
MPI Allreduce routine with the MPI SUM reduction operation [41].

2.3 Optimal load balancing

The initial and intuitive method to assign target particles to tasks is to use sequential ordering, in
which the 1st task handles the first N/np particles in a consecutive segment, the 2nd task handles
the next N/np particles, etc. The illustration of this job assignment is shown in the top of Fig. 2(a).
However, when examining the resulting CPU time on each task, we noticed starkly different times
on each task, indicating a severe load imbalance. This may be understood by the fact that for
particles at different locations, the types of interactions with the other particles through the tree can
vary. For example, a particle with only a few close neighbors uses more particle-cluster interactions
than particle-particle interactions, thus requiring less CPU time than a particle with many close
neighbors. We also notice that for particles that are nearby one another, their interactions with other
particles, either by particle-particle interaction or particle-cluster interaction, are quite similar, so
some consecutive segments ended up computing many more particle-particle interactions than others

6



CPU1% CPU2% CPUn%

CPU1% CPU2% CPUn%

%%%%Par*cles%

Par*cles%

%%Processors%

%%Processors%

Sequen*al%

Cyclic%

(a) (b)

Figure 2: (a): methods for assigning target particles to tasks: sequential order (top) vs cyclic order (bottom);
(b): an illustration of an ORB tree using tasks 0-15 in four subdivisions. The binary code in color shows the
partner of each task at different level. For example: task 0 ∼ (0000)2 has task 8 ∼ (1000)2, task 4 ∼ (0100)2,
task 2 ∼ (0010)2, and task 1 ∼ (0001)2 as its 0-1 partner at level 1 (red), level 2 (green), level 3 (purple), and
level 4 (orange) respectively.

that were instead dominated by particle-cluster interactions. Based on these observations, we designed
a cyclic ordering scheme, as illustrated on the bottom of Fig. 2(a) to improve load balancing. In this
scheme, particles nearby one another are uniformly distributed to different tasks. For example, for a
group of particles close to each other, the first particle is handled by the first task, the second particle
is handled by the second task, etc. The cycle repeats starting from the (np + 1)-th particle. The
numerical results that follow demonstrate the significantly improved load balance from this simple
scheme. We note that we also tried other approaches, such as using random numbers to assign
particles to tasks, but these did not result in as significant improvements as the cyclic approach.

2.4 Domain Decomposition Parallelized Treecode

The cyclically parallelized treecode algorithm has two significant advantages: easy implementation
and high parallel efficiency. However, due to the fact that the entire tree is built on each task, the
scale of the problem this algorithm can handle is limited by the memory capacity associated to each
task. As a remedy, for very large problems beyond this memory limit, we implement a Domain
Decomposition (DD) parallelized treecode under the framework of the orthogonal recursive bisection
(ORB) tree from Salmon’s thesis [40], whose open source C++ implementation using the 0th moment
(center of mass) is contributed by Barkman and Lin [42]. Here we briefly describe the DD-parallelized
treecode using the ORB tree structure.

Starting from one rectangular domain containing all particles, the ORB treecode algorithm recur-
sively divides particles into two equal amounts of groups by splitting the domain using an orthogonal
hyperplane (perpendicular to the longest dimension of the domain) until the finest level in which the
number of tasks equals the number of subdomains at that level as illustrated in Fig. 2(b). In this
manner, each task, as loaded with the same number of particles, is associated to a subdomain and has
a partner task (illustrated as the 0-1 difference using the same color in their binary code) at each level
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of the ORB tree division. Once the ORB tree is constructed, each task builds a local B-H tree [5, 9]
based on their loaded particles, and communicates with its partner task at each level to exchange
additional tree structure information such as clusters and their moments. Here cluster information is
sent only when the maximum acceptance criteria (MAC) between particles of the receiving task and
clusters on the sending task is satisfied. After this procedure each task stores only a small part of the
entire tree such that the far fields are seen only at a coarse level while near fields are seen down to the
leaves, as controlled by the MAC. Note that such a “local essential tree” is a subset of the full tree
and is the necessary tree structure information for computing interactions between the task’s loaded
particles and the entire tree. This is the major difference from the cyclically parallelized treecode in
which the entire tree is built in the memory of each task. The details of constructing the ORB tree
can be found in [40] and our new and additional contribution is to implement the arbitrary order
Taylor expansion as opposed to the original 0th order (center of mass) expansion. In updating the
moments for lower levels of (larger) clusters using moments from higher levels of (smaller) clusters, a
moments to moments (MtM) transformation as described in [7] is applied.

3 Results

The numerical results in this section serve four purposes. First, we show that the cyclic ordering
scheme improves the parallel efficiency of the treecode by improving the load balance. Second, we
show how the treecode parameters such as N0, the number of maximum particles per leaf, p, the order
of Taylor expansion, and θ, the maximum acceptance criterion, affect the parallel efficiency. By com-
paring the parallel efficiency of the cyclic and sequential ordering schemes at different combinations
of treecode parameters, we show that the cyclic scheme reduces the effect of these parameters while
providing a uniformly improved parallel efficiency. With these data, treecode users can choose an op-
timal combination of treecode parameters subject to the trade-off between time and error. Third, we
provide numerical results in a cube with uniformly distributed charges and on the molecular surfaces
of a series of proteins of various sizes, to demonstrate the general usage and consistent performance
of the cyclic ordering scheme for our MPI-based parallelization. Finally, the comparison between
cyclically parallelized treecode and DD-parallelized treecode in computing electrostatic interactions
for charges distributed on the molecular surface of a protein is provided, showing the advantages in
parallel efficiency for the former and in memory scalability for the latter.

Except for the one example on a cube, these numerical results compute the electrostatic potential
induced from partial charges (point charges) distributed on molecular surfaces. Throughout this
section, we report the relative L2 error of the electrostatic potentials,

eφ =


N∑
i=1
|φnum(xi)− φdir(xi)|2

N∑
i=1
|φdir(xi)|2


1/2

(15)

where N is the number of charged elements of the triangulated surface, φdir is the potential computed
using direct summation (which serves as a reference value), and φnum is the potential computed using
treecode.

Unless specified otherwise, simulations are run on the ManeFrame cluster, sponsored by the
Southern Methodist University (SMU) Center for Scientific Computing. This cluster has 1084 nodes,
each with 24G of RAM and 8-core Intel Xeon CPU X5560 @ 2.80GHz processors. Each simulation
uses up to 128 cores, with one MPI task assigned per core. The code is written in C and compiled
using the mvapich2/2.0-gcc-4.9.1 library with the -O2 optimization flag. This cluster uses a high
speed DDR infiniband network at 20 Gbps for its interconnect.

8



3.1 Improving parallel efficiency through optimial load balance

We first focus on one particular protein to extensively study the parallel performance of our algorithms.
We pick the protein with PDB ID 1a63 (Protein Data Bank: www.pdb.org) with 2069 atoms/130
residues. Beyond the structure, the biological significance of this protein is not our main concern. In
our simulations, the molecular surface is generated and triangulated by the mesh generator MSMS [43],
with atom locations obtained from the PDB file. The software MSMS has a user-specified density
parameter d that controls the number of vertices per Å2 in the triangulation. For this case, the MSMS
density d is chosen to be 20, which produces 265,000 triangles. We choose the treecode order p = 3,
maximum number of particles N0 = 500, and MAC parameter θ = 0.8, for the screened Coulombic
potential with ionic screening parameter κ = 1. The particles are located at the centroid of each
triangle with unit partial charges. An illustration of the triangulated molecular surface of protein
1a63 with reduced density d = 10 is given in Fig. 3 to illustrate the triangulated surface.

Figure 3: triangulated molecular surface of the protein 1a63 with MSMS density 10 (vertices/Å2), which
produces 132,196 triangles with point charges at centroids. Note: we use a density of 20 in our simulations,
however we show a density of 10 here for better illustration of the triangular surface mesh.

Table 2 reports the CPU time and parallel efficiency (P.E.) for both the cyclically and sequentially
parallelized treecode methods using increasing numbers of tasks. For comparison purposes, the same
values are also reported for the parallelized direct summation method

(
O(N2)

)
. From the “Direct

Sum” columns, the CPU time is essentially halved when the number of tasks is doubled, indicating
a 95+% parallel efficiency when using 128 tasks. This is due to the fact that electrostatic inter-
actions computed by direct sum for all particles are homogenous, resulting in almost perfect load
balance. However, when the treecode is used for electrostatic interactions, this homogeneity is no
longer maintained, as different particles interact with the tree differently.

For the “Treecode” columns in Table 2, the “N-body Interactions + Utilities” columns contain
both the serial computations (build the tree and compute the moments) and parallel computations
(compute the electrostatic interaction). The “N-body Interactions” columns contain only the parallel
computations. We report the CPU time and parallel efficiency for both the sequentially parallelized
treecode (seq.) and the cyclically parallelized treecode (cyc.). Due to the fact that small portions of
the code are not parallelizable (the “serial” part), when 128 tasks are used the parallel efficiency of
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Table 2: CPU time and parallel efficiency (P.E.) for parallelized direct sum, sequentially parallelized treecode
(seq.) and cyclically parallelized treecode (cyc.) for computing electrostatic interactions on the molecular
surface of protein 1a63 with 265,000 triangles. The treecode parameters are θ = 0.8, N0 = 500, and p = 3,
resulting in relative L2 error eφ = 9.65 × 10−3. The number of tasks np ranges over 1, 2, 4, · · · , 128. We use
“amd.” to denote the parallel efficiency predicted by Amdahl’s law.

np Direct Sum Treecode
N-body Interaction + Utilities N-body Interaction

CPU (s) P.E. (%) CPU (s) P.E. (%) CPU (s) P.E. (%)
seq. cyc. seq. cyc. amd. seq. cyc. seq. cyc.

1 3408.51 100.00 18.06 18.04 100.00 100.00 100.00 17.97 17.96 100.00 100.00
2 1708.79 99.73 9.31 9.12 96.99 98.93 99.20 9.22 9.03 97.44 99.41
4 887.77 95.98 5.11 4.83 88.30 93.44 97.63 5.02 4.73 89.51 94.83
8 446.31 95.46 2.64 2.46 85.40 91.52 94.63 2.55 2.37 88.13 94.70

16 222.70 95.66 1.44 1.29 78.63 87.08 89.17 1.34 1.20 83.74 93.44
32 110.51 96.39 0.80 0.70 70.70 80.90 79.93 0.70 0.60 80.18 93.01
64 55.66 95.69 0.47 0.41 59.93 68.23 66.21 0.38 0.32 74.37 87.72

128 27.80 95.80 0.29 0.27 48.41 53.01 49.29 0.20 0.17 71.10 81.51

sequentially parallelized treecode for “N-body Interactions + Utilities” is reduced to 48%, while the
cyclically parallelized treecode improves it to 53%. However, if we consider only the parallelizable
portion of the algorithm, consisting of the N-body electrostatic interactions after the tree has been
constructed, the parallel efficiency with 128 tasks is 71.10% for the sequential ordering scheme, and
81.51% for the cyclic ordering scheme, a very encouraging result for the treecode parallelization.

Table 3: Profile of 8 costliest subroutines in treecode for computing the electrostatic potential.
Treecode parameters: θ = 0.8, N0 = 500, p = 3, and N = 265,000.

Index % Time (s) Subroutine Description

1* 67.75 7.66 compp direct compute direct summation
2* 16.28 1.84 compp tree compute particle-cluster interactions
3* 13.98 1.58 comp tcoeff compute Taylor coefficients
4 0.97 0.11 readin input protein structure, triangulation
5 0.62 0.07 comp ms compute moments
6 0.18 0.02 main main subroutine
7 0.18 0.02 partition partition particles into upper/lower groups
8 0.09 0.01 triangle area calculate triangle area of each element

The reduction in overall parallel efficiency (N-body Interaction + Utilities) can be well-explained
by the information contained in Table 3. Here, we report the profile (CPU time elapsed on each
routine, excluding the portion taken by its subroutines) of the eight most time-consuming subroutines.
These results were obtained using the GNU profiling tool gprof, which returns the top time-consuming
subroutines, with one MPI task. We divide these subroutines into three groups: Group 1 (underlined
indices 4,6,8) are those that generate particle location and charges, which are not included in our
CPU time calculation for Table 2; Group 2 (bold indices 5 and 7) are the subroutines that build the
tree and compute the moments, which are implemented in serial; Group 3 (indices with a star: 1-3)
are subroutines for the N-body interaction, which are implemented in parallel. The time of Group 2
is negligible compared with Group 3 for small numbers of tasks. However, as more tasks are used, the
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percentage of time used by Group 2 becomes more and more significant, which explains the overall
parallel efficiency reduction in Table 2.

The reduction in parallel efficiency when “Utilities” are included in the CPU time can be predicted
using Amdahl’s law. To see this, we set T1 = 18.04 from the first entry of the 5th column of
Table 2 as the serial time. We then use the data from Table 3 to compute the parallelizable fraction
f = t1/(t1 + t2) = 11.08/11.17 ≈ 0.9919, where t1 = 7.66 + 1.84 + 1.58 = 11.08 is the CPU time
of Group 1 and t2 = 0.07 + 0.02 = 0.09 is the CPU time of Group 2. Amdahl’s law then predicts
the parallel efficiency as T1/T (np)/np, where T (np) = f(T1/np) + (1 − f)T1. These predictions are
shown in the “amd.” column in Table 2, which are relatively consistent with the computed parallel
efficiency of the cyclic order scheme, “cyc.”.

To examine how the choice of sequential versus cyclic ordering ordering scheme affects load bal-
ancing, we plot the CPU time on each task for computing the electrostatic interactions in Fig. 4.
From Fig. 4(a)(c)(e), we can see that when using 32, 64, and 128 tasks for the protein 1a63, the cyclic
scheme has much more balanced load (red circles) than the sequential scheme (blue squares). To verify
this result for more general cases, e.g. for particles distributed uniformly in space, in Fig. 4(b)(d)(f) we
perform the same experiment for 265,000 particles, uniformly distributed on a cube with 10Å length
per side. The result shows a similar pattern as for protein 1a63, which justifies the general use of the
cyclic order scheme. We quantified this load balance by calculating the standard deviations among all
the CPU times used within each experiment (shown in Table 4), which shows significant reduction in
standard deviation of the CPU time for the cyclic ordering scheme in comparison with the sequential
ordering scheme.

Table 4: The standard deviation of the CPU times reported in Fig. 4

32 cores 64 cores 128 cores
sequential cyclic sequential cyclic sequential cyclic

1a63 0.0561 0.0023 0.0318 0.0021 0.0181 0.0033
cube 0.0565 0.0012 0.0332 0.0048 0.0195 0.0006

3.2 The effect of treecode parameters on parallel efficiency

The CPU time and memory use of the serial treecode algorithm subject to treecode parameters has
been extensively examined in [5]. Here we study how the CPU time and parallel efficiency change
subject to treecode parameters within our parallel implementation. We first show in Section 3.2.1 that
the cyclic ordering scheme improves the parallel efficiency at various choices of the parameters, and it
also makes the parallel efficiency less sensitive to the choice of parameters in a case, as compared with
the sequential ordering scheme. This is done by plotting the parallel efficiency as each parameter is
varied. Second, in Section 3.2.2 we show that the general stability of cyclic ordering scheme can be
further verified on a time-error scatter plot, which can also help us to choose the most efficient treecode
parameters for a desired error tolerance. Third, in Section 3.2.3 we use a (parallel efficiency)-error
scatter plot to reveal the fact that when the number of particles per leaf (N0) is small, the parallel
efficiency becomes more sensitive to the choices of other treecode parameters, thus leaving space for
future research on improving parallel efficiency.
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Figure 4: CPU time consumed on each task with seqential ordering (red circles) and cyclic ordering
(blue squares) for 32 tasks (a)(b), 64 tasks (c)(d), and 128 tasks (e)(f), using protein 1a63 with
265,000 triangles (a,c,e) and on a cube with 265,000 particles (b,d,f). Treecode parameters: θ = 0.8,
N0 = 500, p = 3.
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Figure 5: Effects of treecode parameters on parallel efficiency (1 vs 64 tasks). Reference treecode parameters:
θ = 0.8, N0 = 500, p = 3, d = 20. (a) d = 5, 10, 20, 40, 80 (resulting N = 70,018, 132,196, 265,000, 536,886,
1,100,549); (b) order p = 1, 3, 5, 7, 9; (c) N0 = 50, 200, 500, 800; (d) θ = 0.2, 0.5, 0.8.
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3.2.1 Parallel efficiency across various treecode parameters

We consider four treecode parameters: number of particles per leaf N0, MSMS density d (proportional
to the number of particles N), Taylor expansion order p, and MAC threshold θ. We change these
variables one at a time and plot the parallel efficiency (N-body interaction only) using 64 tasks in
Fig. 5. Each data point on these plots represents a different combination of the parameters θ, N0,
p, and d. We use θ = 0.8, N0 = 500, p = 3, and d = 20 (N = 265,000) as fixed parameters when
one of the parameters is changing. Two significant patterns may be observed from these graphs.
First, the cyclic ordering scheme shows better parallel efficiency than the sequential ordering scheme
for all parameter combinations. Second, the cyclic ordering scheme has more stable results than the
sequential ordering scheme, as all the red circles are near 90% when different choices of the parameters
are made, whereas the blue squares fluctuate more significantly (particularly as d and p are varied).
Additional simulations on several other proteins confirms the first pattern, but not the second pattern
in general.

3.2.2 Scatter plot results: time vs error

To further investigate the parallel treecode using the cyclic ordering scheme, we provide scatter plots
of CPU time versus error as treecode parameters are varied. Each data point represents a different
combination of the θ, N0, and p. Once again, we use θ = 0.8, N0 = 500, p = 3 as fixed parameters
when one of the parameters is changing. The density d is uniformly kept at 20 (thus N = 265,000).

Figure 6(top) is the scatter plot when using one task; similar results can be found in our previous
work [5, 33]. Using this scatter plot, we can identify optimal combinations of the parameters θ, N0,
and p for a given accuracy tolerance. For example, to obtain a relative error of 10−4, one should
choose N0 = 50, θ = 0.5, and p = 5 for the fastest speed. Additionally, we see that for fixed θ (same
color), the order p essentially determines the accuracy (especially for larger θ). Therefore, if these two
parameters are fixed for a desired accuracy, smaller N0 will generally provide the best results. This
can be explained by the fact that smaller N0 results in deeper trees, and thus more particle-cluster
interactions are used, resulting in reduced CPU time. Figure 6(bottom) is the corresponding scatter
plot when using 128 tasks. We note that this shows similar results as the single task plot, which
supports our general conclusion that the parallel efficiency when using the cyclic ordering scheme is
rather stable. Both scatter plots show that larger θ brings faster but less accurate results. In addition,
they indicate that smaller N0 (triangle) uses less CPU time for a desired error at fixed p and θ, thus
we should use smaller N0 for faster calculations. However, if we instead investigate a scatter plot of
parallel efficiency against error, as in the next section, an interesting phenomenon is revealed.

3.2.3 Scatter plot results: parallel efficiency vs error

In Figure 7 we show a scatter plot for the same testing case as in Figure 6, but where the vertical
axis is the parallel efficiency instead of the CPU time. While the results in this plot may at first
seem slightly erratic, they elucidate some interesting phenomena. First, if we temporarily hide the
lines with triangles (N0=50), all parallel efficiency values are within the 75%-90% range, and thus the
parallel efficiency values are generally stable. Second, focusing only on the lines connecting triangles
(N0 = 50) we see that the parallel efficiency values fluctuate rapidly, indicating that the load balance
becomes sensitive to p and θ when N0 is small. This observation opens space for future research to
improve parallel efficiency for the case of small numbers of particles per leaf, N0.
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Figure 6: Scatter plots of time vs error on protein 1a63 for 1 task (top) and 128 tasks (bottom). Treecode pa-
rameters: p = 1, 3, 5, 7, 9 from right to left on one connected line; d = 20 (N = 265,000); N0 = 50, 200, 500, 800;
θ = 0.2, 0.5, 0.8.
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Figure 7: Scatter plot of parallel efficiency vs error. Treecode parameters: p = 1, 3, 5, 7, 9 from right to left on
one connected line; N = 265,000; N0 = 50, 200, 500, 800; θ = 0.2, 0.5, 0.8.

3.3 Accuracy and efficiency across a wide collection of proteins

We finally compute the electrostatic interactions on a series of 24 proteins with different sizes and
geometries. The numerical results are reported in Table 5. Here, the first column is an identification
index for convenience in the discussion that follows. The second column is each protein’s four-digit
protein data bank (PDB) ID. Column 3 is the number of elements on the triangulated molecular
surfaces of each protein. This determines the surface areas of each protein, as shown in column
6. Column 4 is the number of atoms in, and column 5 is the total charge carried by, the proteins,
respecively. We uniformly choose MSMS density d = 20 so that proteins with larger molecular surface
areas (column 6) will normally generate larger numbers of elements. A few exceptions occur because
MSMS modifies the given density to fit its triangulation needs, resulting in a slightly mismatched
order for the data in columns 3 and 6; however, the general pattern remains that a larger number of
atoms results in larger molecular surface areas and numbers of elements. Columns 7 and 8 show the
time for computing N-body electrostatic interactions on one CPU (T1) and 128 CPUs (T (128)) in
seconds, respectively. Column 9 reports the parallel efficiency calculated resulting from columns 7 and
8, and indicate an overall parallel efficiency of 70-85%. More importantly, larger systems generally
result in higher parallel efficiency. Column 10 shows the memory used in each calculation, which
is small and linear O(N) with respect to N from column 3. This memory saving feature is one of
the key advantages of the treecode algorithm. The last column shows the L2 potential errors, which
are consistently about 10−2. This table demonstrates the general applicability of the cyclic ordering
scheme for parallel treecode on different geometries and structures.

3.4 Comparison between cyclically parallelized and DD-parallelized treecodes

Here we provide numerical results demonstrating difference in terms of CPU time, parallel efficiency
and memory usage between the cyclically parallelized treecode and the DD-parallelized treecode, both

16



Table 5: parallel efficiency for electrostatic interaction calculations on molecular surfaces of 24 proteins: N is
the number particles; treecode parameters are p = 3, θ = 0.8, N0 = 500, d = 20.

ID PDB N Na charge Area T1 (s) T (128) (s) P. E. (%) Memory (K) eφ
1 1ajj 81798 519 -5 2171.5 5.121 0.055 73.43 10264 9.56e-3
2 2erl 87136 573 -6 2323.5 5.738 0.059 75.68 10868 9.40e-3
3 1cbn 88765 648 0 2371.4 5.307 0.060 69.72 11156 8.40e-3
4 1vii 94458 596 2 2482.1 6.795 0.067 78.81 11624 9.42e-3
5 1fca 95901 729 -7 2552.7 7.738 0.076 79.37 12012 1.07e-2
6 1bbl 98311 576 1 2610.6 5.636 0.060 73.72 12324 9.43e-3
7 1sh1 102866 702 0 2750.1 6.268 0.067 73.55 12828 8.71e-3
8 2pde 103456 667 3 2721.7 6.776 0.069 76.81 12828 9.14e-3
9 1vjw 105744 828 -6 2792.4 5.837 0.061 74.34 13216 8.90e-3
10 1uxc 107704 809 4 2842.1 6.273 0.070 70.48 13404 8.92e-3
11 1ptq 108958 795 3 2904.0 7.164 0.073 77.11 13472 9.13e-3
12 1bor 109649 832 -3 2910.4 7.088 0.072 76.87 13392 9.02e-3
13 1fxd 110126 824 -15 2928.7 6.535 0.068 74.71 13624 8.55e-3
14 1r69 115278 997 4 3061.5 6.904 0.071 75.53 14088 8.92e-3
15 1mbg 116093 903 6 3080.5 7.396 0.076 76.12 14164 9.17e-3
16 1bpi 120948 898 6 3240.2 9.720 0.102 74.47 14756 1.13e-2
17 1hpt 123178 858 -1 3270.1 7.519 0.075 78.08 15184 9.44e-3
18 451c 158468 1216 -1 4168.6 9.231 0.092 78.31 18980 9.72e-3
19 1frd 165392 1478 -11 4377.2 11.327 0.109 81.09 19268 8.68e-3
20 1a2s 169679 1272 -9 4447.0 10.539 0.104 79.00 19704 9.34e-3
21 1svr 176906 1435 -2 4654.8 11.991 0.114 82.21 20176 9.11e-3
22 1neq 179327 1187 4 4727.4 12.502 0.119 81.79 20300 9.87e-3
23 1a63 265000 2065 -1 6989.4 17.960 0.172 81.51 30348 9.65e-3
24 1a7m 294285 2809 7 7751.8 27.428 0.250 85.70 32584 1.12e-2

using the ORB tree structure for a fair comparison. The simulations are run on clusters using intel
processors (Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz) sponsored by the Institute for Cyber-
Enabled Research (ICER) at Michigan State University (MSU).

Table 6 shows a comparison between domain decomposition (DD) parallelized ORB treecode and
cyclically parallelized ORB treecode (cyc.) in computing electrostatic interactions between charges
located on the surface of protein 1a63 as used in Table 2. In the column titled “N-body Interactions +
Utilities”, the time for tree construction and the moment computation are included in addition to the
time for computing electrostatic interactions. In the column titled “N-body Interactions”, only the
time for computing electrostatic interactions is recorded. From these two columns, we can see that
the parallel efficiency for building local essential trees is not as high as N-body interactions, thus drags
down the overall parallel efficiency. This is due to the intensive message passing process involved in
building the tree and exchanging cluster information, particularly when high order moments are used
for arbitrary order Taylor expansion. For example, when 128 cores are used the parallel efficiency of
DD-parallelized treecode is 34.41% as compared with 36.31% for the cyclically parallelized treecode.
Note in order to test the cyclically parallelized treecode on the ORB tree, a full tree on each task
is built using local essential trees on all tasks by message passing. As for the time for “N-body
Interaction”, the parallel efficiency with 128 cores is 63.26% for DD-parallelized treecode and 74.05%
for the cyclically parallelized treecode. This difference in parallel efficiency can be well explained by
the load balance shown in Figure 8. The cyclically parallelized treecode builds the entire tree in the
memory of each task thus could optimize the load balance by cyclically assigning particles that are
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geometrically close to different tasks while the DD-parallelized treecode must assign particles that
are geometrically close to the same task. Meanwhile, parallelization by building the entire B-H tree
on each task has higher parallel efficiency as seen in Table 2 than parallelization by building local
essential trees on each task as seen in Table 6. However, from the memory usage shown Table 6,
we can see that the DD-parallelized treecode is scalable, thus it can handle very large sized N-body
problems, while the cyclically parallelized treecode inherently limits the problem size to the memory
capacity associated with each MPI task.

Table 6: CPU time, parallel efficiency (P.E.), and memory usage for DD-parallelized ORB treecode (DD) and
cyclically parallelized ORB treecode (cyc.) for computing electrostatic interactions on the molecular surface of
protein 1a63 with 265,000 triangles. The treecode parameters are θ = 0.8, and p = 3. The number of tasks np
ranges over 1, 2, 4, · · · , 128. Memory is reported as the average memory usage per core.

N-body Interaction + Utilities N-body Interaction Memory Usage

CPU (s) P.E. (%) CPU (s) P.E. (%) Mem. (MB) P.E. (%)

np DD cyc. DD cyc. DD cyc. DD cyc. DD cyc. DD cyc.

1 50.67 50.84 100.00 100.00 49.80 49.84 100.00 100.00 97.20 97.2 100.00 100
2 25.39 25.64 99.77 99.16 25.09 25.13 99.26 99.14 51.29 97.2 94.76 50
4 13.66 13.53 92.73 93.94 13.38 13.23 93.09 94.17 26.96 97.2 90.13 25
8 6.97 7.01 90.86 90.64 6.80 6.81 91.58 91.46 14.96 97.2 81.21 12.5

16 4.36 3.96 72.68 80.34 3.97 3.83 78.46 91.43 8.20 97.2 74.04 6.25
32 2.51 2.44 63.13 65.01 2.10 1.95 73.98 79.90 4.73 97.2 64.23 3.13
64 1.46 1.24 54.11 64.18 1.15 1.00 67.66 78.04 3.27 97.2 46.40 1.56

128 1.15 1.09 34.41 36.31 0.62 0.52 63.26 74.05 2.19 97.2 34.63 0.78
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Figure 8: CPU time consumed on each task with cyclically parallelized treecode (red circles) and DD-
parallelized treecode (blue squares) for 64 tasks (a), and 128 tasks (b), using protein 1a63 with 265,000 triangles.
Treecode parameters: θ = 0.8, p = 3.
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4 Conclusions

The flexible order Cartesian treecode method uses particle-cluster computations to replace the particle-
particle computations for far-field interactions for N-body problems, thereby significantly reducing
the computational cost from O(N2) to O(N logN). The key advantages of the treecode algorithm
compared with the popular FMM [4] are its ease of implementation, memory savings (an O(N) cost
with a small pre-factor), and efficient parallelization.

In this paper, we show that through replication of the tree structure on all tasks, MPI-based
parallelization of treecode is straightforward, but care must be taken when decomposing the work
among tasks. To this end, the novel cyclic ordering scheme significantly improves the load balancing,
and thus the parallel efficiency, in comparison with a standard sequential ordering. We show that
when using 128 tasks for a protein surface with 265,000 partial charges, the cyclic ordering scheme can
compute the pairwise screened Coulombic interaction in 0.17s with 81.5% parallel efficiency, which
has more than 10% improvement compared with the sequential ordering scheme. Additoinally, the
cyclic ordering scheme for the treecode parallelization can be conveniently extended to other kernels
and structures.

We also investigate how the parallel efficiency changes based on different choices of the treecode
parameters, such as Taylor expansion order p, Maximum Acceptance Criterion θ, and maximum
number of particles per leaf N0. By studying plots of parallel efficiency against parameters as well
as the time-error and (parallel efficiency)-error scatter plots, we conclude that the cyclic ordering
scheme improves the parallel efficiency at various choices of the parameters, and also makes the
parallel efficiency less sensitive to these parameter choices than the sequential ordering scheme for
the tested case. We further show that the time-error scatter plot can help to select the most efficient
treecode parameters for a desired error tolerance. Furthermore, the (parallel efficiency)-error scatter
plot reveals the fact that when using a small number of particles per leaf N0 (for saving CPU time),
the parallel efficiency becomes more sensitive to the selection of treecode parameters. We will research
this topic for further improvement in future work.

The current work can be further extended in the following directions. First, we plan to paral-
lelize the processes for building the tree and computing moments, which will further improve the
overall parallel efficiency by increasing the parallelizable fraction. Second, we are working toward
the parallelization of a Poisson-Boltzmann equation solver based on the boundary element method;
this uses treecode to efficiently compute the matrix-vector product Ax in each GMRES iteration.
Due to its algorithmic simplicity and small memory requirements, treecode is a good candidate for
GPU-based parallelization [26, 44]. We note that recursion has been recently supported on GPUs,
which will make our treecode implementation on such architectures more convenient. Third, the
Coulomb interactions for the more accurate point multipole model (instead of the widely used point
partial charge model) demand highly efficient calculations of N-body interactions [36, 37], and may
additionally benefit from the advances in this work. Finally, for some three-dimensional applications,
e.g. in astrophysics, which have much larger numbers of particles, this approach of tree replication
will rapidly limit scalability, which calls for parallelization using MPI domain decomposition. To this
end, we implement a DD-parallelized treecode algorithms using the ORB trees. the numerical results
show its scalability in memory as the problem size and number of tasks are simultaneously increased.

For dissemination to the greater science community, we published the cyclically parallelized
treecode and the DD-parallelized treecode as open source software on GitHub (https://github.
com/Jiahuic/treecode_parallel) under the General Public License (GNU); this software is main-
tained by Jiahui Chen, who was an SMU graduate student and is now as a postdoc at MSU.
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